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The apparatus of Feynman integrals over trajectories is used to derive continu- 
al conservation equations for suspension phases and to analyze particle diffu- 
sion in a fluidized bed. 

Construction of the principles of disperse system hydromechanics is fraught with serious 
difficulties, due to a significant degree to the stochastic nature of these systems and the 
necessity to develop and give a foundation to special new methods of investigation that com- 
bine the traditional methods of mechanics with certain ideas about averaging which are spe- 
cific for statistical physics. Consequently, searches and the application of new, in prin- 
ciple, and sufficiently constructive approaches are of substantial interest in this rapidly 
developing region of science. One such approach can be based on the analysis of possible 
trajectories of the system in its phase space and on the integration procedure using the 
Wiener probabilistic measure ifi the space of these trajectories. 

The approach mentioned is used below on two different kinds of problems, on deriving the 
fundamental continual conservation equations for the suspension phases of spherical particles, 
and on the description of random displacements of one particle. The most sequential of the 
known solutions of the first problem is related to using the averaging procedure developed 
in [i, 2] for the local "microscopic" conservation equations in the ensemble of spatial par- 
ticle configurations given by the instantaneous positions (but not the velocity, accelera- 
tion, etc., vectors) of the centers of all particles. As can be shown [3], the use of such 
an ensemble is actually equivalent to a very limiting assumption that the particle transla- 
tional motion velocities are proportional to the forces acting on them, i.e., to a known 
quasistationary "strong friction" approximation. Application of the approach proposed in 
this paper permits getting rid of the constraint mentioned by extending the fundamental equa- 
tions to arbitrary situations in which the ensemble of states is defined not only by the set 
of vectors fixing the location of the centers of the particles, but also their time deriv- 
atives. 

Analysis of the second problem permits proposing an alternative method of describing 
the statistical properties of random trajectories of separate particles in ordinary space, 
and giving a physical interpretation for their displacement as specific realizations of a 
Brownian motion random process that turns out to be useful for processing appropriate experi- 
mental results. As an illustration we examine particle displacement in a fluidized bed. 

I. Derivation of Continual Equations. The probability of object passage through a 
"window" (a~, b:), ..., (an, b n) at the times t,, ..., t n for the trajectory peak represented 
in Fig. 1 (corresponding to a one-dimensional process) is determined by the expression [4]: 
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As n + ~ this expression (I) goes over into an infinite integral over the Feynman tra- 
jectories [5], where the differential volume element in the trajectory functional space is 
the Wiener measure. The probability that the trajectory will belong to a certain class A, 
as well as the mean of an arbitrary functional G[x(t)], are expressed in terms of Feynman in- 
tegrals over trajectories thus [5]: 
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Random trajectories in one-dimensional phase space. 

PA = S P[x(t)lDx (t), < G ) = S G[x(t)]P[x(t)]Dx(t). (2) 
A A 

It is assumed here that the probability density functions P[x(t)] is normalized to unity. 
The relationships (2) are easily extended to phase trajectories in the space of three or 
more dimensions. 

As in [i, 2], we consider a suspension containing N spherical particles. The state of 
the particle system is described at any time by a point in the phase space of the coordinates 
of the particle centers and their time derivatives {r(1)(t), ..., r(N)(t), ~(1)(t), ..., 
~(N)(t), ...} and its behavior is described by trajectories in this space x(t). The local 
physical quantities (density, momentum, moment of momentum, different kinds of energy, en- 
tropy, etc.) denoted by the common symbol G can be considered as functionals of the tra- 
jectories, i.e., G = G(t, r, [x(t)]). The mean value of G for a suspension is in conformity 
with (2) 

< G ) (t, r) = j" G (t, r, Ix (t)]) P Ix (t)] Dx (t). 

If the generalized functions 

1, r C Vo Ix (t)], O, (r, [x (t)D = I - -  Oo, 
Oo (r, [x (t)]) = O, r E V1 [x (t)], 

are introduced, then it is easy s define the means over the phases in an analogous manner 
[i, 2] : 

(3) 

( OoG ) (t, r) = ~ Oo(r, [x(t)])G(t, r, [x(t)l)P [x(t)JDx(t), (4) 

< o,o > (t, 0 = ~ O,(r, Ix(t)])O(t, r, Ix(0])P [x(t)l O x(O 

Since the integrals over the trajectories possess the properties of Lebesgue integrals, 
they can be differentiated under the integral sign with respect to the independent variable 
r playing the part of a parameter. If, in addition, the inequality t >> T is satisfied, 
where T is the "microscopic" time scale at the level of the individual particles, it can be 
considered approximately that the operations of differentiation with respect to the time and 
integration in the functional space of the trajectories will commutate. We then have from (4) 

/ 0 OoG) 0 
\ Or = - ~ r  ( @oa ) , 

/ O._O_ OoG) a 
\ at = -oT < CoG >,  

/" 0 ~)16 ) : O 
\ dr Or ( 01G >, 

/ d O1G) 0 
\ at == 0--7- < O~G >. 

(5) 

Writing the Feynman integrals (4) of the left and right sides of the local balance equa- 
t ion 
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dG OQ 
dt Or 

which expresses the rate of change of the quantity G in terms of the divergence of the corres- 
ponding flux Q, and taking (5) into account, we obtain 

/ oo dG \ -=- 0 / 0 0 Q \  dG \ = OQ 
\ dt / Or < Q ) - -  \ 1 Or / '  (01 dt / ~ 01 / \ (6) \ O r / "  

In principle, the system (6) contains all the continual conservation equations obtained 
earlier in [i, 2], as well as in [6, 7], and agrees in form. However, no constraints were 
imposed on the properties of the statistical ensemble of states in the derivation of (6), but 
just the fact of the existence of the random trajectories x(t), which can be nondifferentiable 
in the general case, was used. (This latter is important, in principle, since jumplike 
changes in the particle velocities and their time derivatives during collisions correspond to 
phase trajectory discontinuities.) Consequently, the system (6) possesses a considerably 
higher degree of generality than follows from its derivation in [I, 2, 6, 7] which is based 
on the utilization of just an ensemble of particle configurations at a certain time. 

If we go over to the trajectory of a single particle in its coordinate space in the in- 
tegrals (3) and (4) then, in principle, the so-called problem of a "trial" particle can be 
formulatedj whose solution will permit finding the viscosity and other effective properties 
of the suspension and will thereby close the system of equations (6). 

2. Random Particle Behavior. The dispersed phases in real particle fluxes participate 
in ordered average motion of this phase, which can be described by solving the appropriate 
boundary value problem for (6). Moreover, because of random particle interactions and with 
the pressure and velocity field fluctuations of the dispersion medium that exist in not only 
turbulent but also laminar flows of disperse mixtures, the individual particles are entrained 
into chaotic fine-scale motion. Phenomenologically the total particle motion can be repre- 
sented by using the Langevin equation which has the following form in the one-dimensional case: 

dv 
+ [~v = A(t), A(t) = Al(t  ) +A2(t).  (7)  

dt 

The total force in (7) is represented in the form of the sum of two components, the first 
of which describes the regular action from the average flow of the dispersion medium and the 
external mass forces while the second characterizes the purely random action on the particle 
under consideration by the other particles and the random fluctuations of the dispersion 
me d ium. 

Separation of the total particle motion into regular associated with the large-scale cir- 
culation flows and fine-scale chaotic is especially significant for fluidized systems [8] ; 
the Langevin equations method was applied to such systems in [9]. 

Following [i0], we represent the mean value of the regular force acting on a particle by 
the relationship AI = qBv, where the weight factor n takes account of the statistical proper- 
ties of this force. The physfcal meaning of the quantity n will be cleared up below. The 
particle motion described by (7) possesses the Gaussian properties of a Markov process [II] 
under the usual assumptions about the properties of A2 (t)~ where the correlation function 
for the particle velocity with the expression for AI taken into account is represented in the 
form 

R~o, (t, t ' ) :  < ~ > (1 - -~ )~exp[ - -~  ( 1 - - ~ ) l t - - t ' ! ] .  (8) 

The rms p a r t i c l e  b i a s  can be e x p r e s s e d  by s t a n d a r d  means in  t e rms  o f  t h e  second  v a r i a -  
t i o n a l  product of the characteristic functional of the process, which in the most general 
case may be written as follows for a Gaussian process [5]: 

~(D [k (t)]----exp[iS k(t) F (l)dt] exp [ - - +  ~.I k (t) k (t')Rxx, (t, t') dtdt'], (9) 

where  Rxx'  ( t ,  t ' )  i s  t he  c o r r e l a t i o n  f u n c t i o n  f o r  the  p a r t i c l e  c o o r d i n a t e  f o r  which  we ob-  
t a i n ,  on t he  b a s i s  o f  ( 8 ) ,  
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Fig. 2. Time dependence of <l=>/t 2 calculated from the experi- 
mental data in [16]: i, 2) w = 1.19 and 1.62 m/set; t, secl 
<12>/t 2, m2/sec 2. 

Fig. 3. Dependence of the left side of (17) on B. 
TS 

R=,(~, s)=~.[R~o,(t, t')dtdt'= <v2>(1--~l)[~-- fl~(~) 4-s 
oo ~ ~ ( 1 - - n )  (lO) 

~(s) I ~ - - s l +  ~ ( ~ - - s )  ] ,  ~(~) = 1 - -  exp[ - -  6 ( 1 - - n ) / %  
13 (1 - -  TI) [5(1--~1) ] 

Omitting the details of calculating the variational derivative, we arrive at the result 

5~<D I = F. _t_ Rxx, ls=~=t = < v > ~n,t2 + 2 < v2 > ( 1 - -  ~l) [ t - ~(t)  ] 
<x~ > - 6k(s)6'~('O~=o, ,=,=~ I~ I ~ ( 1 - - ~ )  " " 

(ll) 

Only a stationary random process was actually considered in the calculations and the 
representations (9) and (i0) as well as the expression F = = <v>2~at = for a regular contribu- 
tion to <x 2> corresponding to the representation used above for A~ and describing particle 
drift with mean velocity <v> were taken into account. The quantity D = <v=>/8 in (ii) has 
the meaning of an effective particle diffusion factor. 

The result (ii) allows interpretation on the basis of a representation of Brownian vec- 
tor motion proposed in [12] for the description of random trajectories of biological (live) 
objects. If the particle displacement is represented as the successive imposition of M separ- 
ate elementary shifts (ranges) then the latter can be separated into M' "vector" (directional) 
and M" "Brownian" (chaotic) ranges, where M = M' + M". The fraction q = M'/M as M § ~ is the 
degree of vectorization of the random motion. Since vectorization of the ranges is also a 
random process, the direct observation of vector ranges is difficult. 

For a continual description of particle diffusion in a disperse flow the degree of vec- 
torization ~ can be considered as a certain order parameter. Indeed, the flow can be con- 
sidered a typical dissipative structure characterized by a macroscopic time scale T and an 
internal microscopic scale T associated with the fine-scale chaotic motion within the macro- 
scopic fluctuations in concentration of a dispersed medium. The relationship (ii) is asymp- 
totically correct for t ~ T >> T. The process will be explicitly nonstationary in an analy- 
sis of diffusion in the time intervals t ~ T. In this case a local (in time) order parameter 
n(t) can be introduced and the operator form of the diffusion coefficient 

D ( ~  (12) 
D = D ~ + lq -Td /d t  ' 

c o r r e s p o n d i n g  to  t h e  d e s c r i p t i o n  of  t h e  p r o c e s s  i n  a r e l a x a t i o n  a p p r o x i m a t i o n  [14~ can  be  
u s e d .  Here  D (~  and D (~) a r e  d i f f u s i o n  c o e f f i c i e n t s  f o r  c o m p l e t e l y  c h a o t i c  (n = . )  and 
strictly directional (n = 1) particle motion. 

Let us note that for q = 0 the relationship (Ii) goes over into the known Ornstein form- 
ula, which is transformed into the classical Einstein formula as t + ~. 

3. Example: Partic]e Diffusion in a Fluidized Bed. The vector component of the dis- 
placement for a particle in a fluidized bed is due to particle entrainment in regular circula- 
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Fig. 4. Dependence of the particle diffu- 
sion coefficient in a fluidized bed on the 
fluidization rate; points are experiment 
in [16]; curve is theory in [17]. D in 
m2/sec and w in m/set. 

tion motion, and the Brownian component is due to its fine-scale fluctuations. The relation- 
ship (ii) was relied upon in the problem under consideration in [15]. 

The fundamental characteristics of the motion, the order parameter, the diffusion coef- 
ficient, and the drift velocity, can be found by using (II) in the experimental dependences 
of <xa>/t on the time. The appropriate computational procedure for the case when the direc- 
tion of the vector ranges is known, is described in [12]. Here we consider processing test 
data in the general case when this direction is unknown, in the example of results in [16] 
where motion trajectories were investigated for a labelled radioactive particle in a cylin- 
drical fluidized bed for two fluidization regimes. The tests in [16] reduced to determin- 
ing the radial r and vertical z coordinates of the particles at equal time intervals (0.5 
sec and 0.25 sec for 1.19 and 1.62 m/set fluidization rate values, respectively). For such 
a two-dimensional particle displacement (ii) can be rewritten in the form [B = B-I(1 -- n) -a] 

o [ ( ( ))] 
<I? >=<r~q-z2> B I--~ q - 4 D ( l - - ~ ] )  t - - B  l--exp--~-- . (13) 

It is convenient to process the data to determine the characteristics of the motion by 
using the dependence <12>/t 2, whose left side is determined experimentally by measured par- 
ticle coordinates after fixed time intervals At 

< I~ > _ 1 ~-i  
t~ (n - -  j ) ( ] a t p  ~ [(r~+j-- ri) ~ + (zi+j - -  z,)~], (14)  

i =  1 

w h e r e  j = 1 ,  2 ,  . . . ,  n i s  t h e  number  o f  m e a s u r e m e n t s .  The d e p e n d e n c e s  (14)  a r e  p r e s e n t e d  i n  
F i g .  2 f o r  t e s t s  i n  [ 1 6 ] .  To f i n d  t h e  p a r a m e t e r s  D, B, and  n i n  ( 1 3 ) ,  a s y s t e m  o f  e q u a t i o n s  
s h o u l d  be  c o m p i l e d  t h a t  c o n s i d e r s  t h e  b e h a v i o r  o f  t h e  q u a n t i t y  < 1 2 > / t  2 a s  t + 0 and  t ~ = ,  a s  
w e l l  a s  t h e  v a l u e  o f  t h i s  q u a n t i t y  a t  a c e r t a i n  a r b i t r a r y  t i m e  ( f o r  i n s t a n c e ,  t = 0 . 5  s e c ) .  
We t h e n  a r r i v e  a t  t h e  e q u a t i o n s  

lim <- IZ > __ __D [(_7_.~_. . /~_2] 
t~o, t 2 B ( 1 - - ~ l ) [ \ l _ _ ~ l / j - - - - a ,  

(15) 
lira < 12 > --  D ~1~" - - b ,  
t -~  t 2 B 1 - -  

I - [ [-'1] (/'>:f' t=o,5 DB (1--11)(l~ ' i -- '~- ,  q - 4 ( 2 B - - 4 B 2 q - 4 B ~ e x p  ~-~- ) = c .  

Having determined a, b, and c from dependences (14) represented in Fig. 2, it is easy 
to find D, B, and n from system (15). We have 

]/-2-b ( ~ a - - b  - -  ]/-2-b), ( a - - b ) B  (16) 
~1= a- -3b  D =  2(1--~1)  ' 

where B is the solution of the transcendental equation 

2B - -  4B2 + 4B 2 exp - -  = 2 (a - -b)  

and can be determined graphically [the dependence of the left side of (17) on B is shown in 
Fig. 3]. 
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Values of the particle diffusion coefficient for two regimes of conducting the tests in 
[16] are displayed by the points in Fig. 4. Here the theoretical dependence of the diffusion 
coefficient on the fluidization rate, computed for the conditions of the experiment in [16] 
on the basis of the model in [17] is presented. As is seen~ there is a fair agreement be- 
tween the data of theory and experiment. On one hand, this indicates adequacy of the repre- 
sentation and methodology of processing experiments developed in this paper and, on the other 
hand, the adequacy of the theory of fine-scale mixing in fluidized systems proposed in [17]. 

NOTATION 

A, random force; B = B-I(1 -- n)-1; a, b, c, experimentally determined quantities in (15)- 
(17); D, diffusion coefficient; F, function in (9) and a scalar in (ii); G, an average physic- 
al quantity; k(t), a trajectory in wave space; ~, complete displacement; M, number of paths; 
N, number of particles; P, probability density; Q, flux of the quantity G; R, correlation 
function; r (1), radlus vector of the center of the i-th particle; r, z~ radial and axial co- 
ordinates; T, macroscopic time scale; t, time; Vo, V~, parts of space occupied by the dis- 
perse medium and the particles D respectively; v, particle velocity; w, fluidization rate; 
x(t), trajectory in phase space; B, resistance factor; n, degree of vectorization of the mo- 
tion; 0o, @I, generalized functions introduced in Vo and VI; T, microscopic time scale; ~, a 
quantity introduced in (I0). 
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